Contemporary Thinking on Assessment Validation
Arguments, Decision, & Kane’s Framework

David A. Cook, MD, MHPE
SDRME June 2015

Workshop outline
- **Decisions**
 - The validity argument
 - Key inferences
 - Pearls for scholars

Assessment = decision

Decisions
- Selection
- Learning (direction, motivation, feedback)
- Tailoring (mastery, accelerate/remediate)
- Certification (competence, milestones)

How good are the assessments we’re using?

Assessments are diagnostic tests
- Pulmonary embolism?
 - History
 - Exam
 - CBC
 - D-dimer
 - Chest x-ray
 - CT angiogram
- Competent physician?
 - Rotation shelf exam
 - OSCE
 - Simulation procedural assessment
 - Certifying exam
 - Workplace observation

Integration → Decision / Action

Diagnostic Tests → Decisions
- Prostate specific antigen (PSA)
 - Decision: treat prostate cancer?
 - (Not just diagnosis)
- Learning styles
 - Decision: adapt instruction?
 - (Not just diagnosis)
- Mini-CEX
 - Decisions: What feedback? Remediation?
What's the decision?

<table>
<thead>
<tr>
<th>Medical student</th>
<th>Resident</th>
<th>Practitioner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preclinical Friday quiz</td>
<td>Certification exam</td>
<td></td>
</tr>
<tr>
<td>Preclinical final exam</td>
<td>Mini-CEX direct observation</td>
<td>Patient satisfaction survey</td>
</tr>
<tr>
<td>Clinical skills OSCE</td>
<td>Quality metrics</td>
<td>Clinical quality metrics</td>
</tr>
<tr>
<td>USMLE Step I examination</td>
<td>Clinical rotation grade</td>
<td>Workshop evaluation form</td>
</tr>
<tr>
<td>Clinical rotation direct observation</td>
<td>Program director final</td>
<td>Clinical teaching assessment</td>
</tr>
<tr>
<td>Clinical rotation shelf exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic strategies: Programs of assessment

Workshop outline
- Decisions
- The validity argument
- Key inferences
- Pearls for scholars

A Parable … Collecting the evidence
- Detective #1 – trust your gut
- Detective #2 – Law & Order
- Detective #3 – formal model as trained
- Detective #4 – strategic use of model

A Parable … Interpreting the evidence
- Attorney #1 – run to the judge
- Attorney #2 – logical organization
- Attorney #3 – use framework, careful argument
- Attorney #4 – use framework to identify gaps in argument, fill gaps

A Parable … Making the decision
- Juror #1 – throw away the key
- Juror #2 – 55%, lock him up
- Juror #3 – 55%, insufficient evidence
- Juror #4 – 55%, but 90% for lesser charge
Validity

• “... the degree to which evidence and theory support the interpretations of test scores entailed by proposed uses”
 – AERA / APA 1999

Argument-based approach

“The core idea is to state the proposed interpretation and use explicitly and in some detail, and then to evaluate the plausibility of these proposals.”
M. Kane, 2013

Validity is an hypothesis …

• About a specific interpretation or decision
• Focused on a specific construct
• Collect evidence to support or refute

Observations → Scores → Inference @ Construct
→ DECISION

Validity frameworks:
A very brief history

1920: Types of validity
• Criterion validity
• Content validity

1950: Types of validity
• Correlational validity
• Content validity
• Construct validity

1989: Sources of evidence
• Content
• Response process
• Internal structure
• Rel. other variables
• Consequences

2000: Argument
• Scoring
• Generalization
• Extrapolation
• Decision and use

What if no gold standard?
Risk of confirmation bias.
Too many types.
Everything relates to the construct.
Where to fit reliability?

How to prioritize evidence?

Kane – simplified!

Validation =
+
evaluate claims

Inference, not instrument

• Valid instruments
• Valid scores (for inference/construct/use)

Observations → Scores → Inference @ Construct
→ DECISION
Building the validity argument

- State proposed decision (use)
- State interp/use argument (hypothesis, claims)
- Test weakest assumption(s)
- Review evidence
- Reject
- Plausible (accept)

What people actually do

- Vaguely mention construct
- Test strongest assumption
- Accept hypothesis

Strong vs weak validity arguments

- “The weak program is sheer exploratory empiricism; any correlation of the test score with another variable is welcomed. The strong program … calls for making one’s theoretical ideas as explicit as possible, then devising deliberate challenges.” – Cronbach 1988
 - Current model does not require theory, but does “require that proposed interpretation and use be specified clearly” – Kane 2008

Why not focus on the test?

- Appropriateness depends on context: learner, environment, application
- Reliability varies by learners (uniformly smart people = low reliability)
- Alignment of domain (few generalizable skills)
- Focus on decisions (interpretations)
 - Validity is contingent on the question asked

Bottom line

- All validity is construct validity
- Validity is an hypothesis, tested by evidence
- In the end, we want an inference (and decision)

Observations → Scores → Inference → Construct

→ DECISION

Workshop outline

- Decisions
- The validity argument
- Key inferences
- Pearls for scholars
Building the validity argument

State proposed decision (use)

State interp/use argument (hypothesis, claims)

Test weakest assumption(s)

Revise instrument or use as warranted

Review evidence

Reject

Plausible (accept)

Categories to organize evidence

- Scoring
- Generalization
- Extrapolation
- Decision

Scoring

- From observed performance to observed score
- Performance is the data, score is the claim
- “Did everyone get the same test?”
 - Standardization (including raters)
 - Test security
 - Item & response development (choices)
 - Scoring rubric, pass/fail standard

Variables in clinical examination

AIM: Standardize examiner and PATIENT

- Standardized Patient
- Simulator

- Training
 - Objective vs. Subjective outcome measures

AIM: Standardize examiner and PATIENT
Generalization

- How well does observation + score reflect desired test domain
 - Content representative; adequate sample
- Scores reproducible across repeated test administration
 - Reliability (item, station, rater)
 - Generalizability Theory

Case Specificity

Domain of Competence

Test Sample

Extrapolation

- From "test" score to real-world proficiency
 - Empirical evidence shows that test scores relate to construct(s)
 - Experts >> Novices
 - Correlation with other measures
 - Improvement after training
 - Full breadth of real-world task

Decision

- From person’s score to decision about person
- Evaluate consequences of different decisions for people with different scores
 - Intended outcomes achieved?
 - Differential impact on groups?
- Impact on learner, program, society

Advantages of Kane

- Formalize the hypothesis
- Focus on inferences
- Programmatic assessment
- Qualitative assessments (narrative data!!!)
On an OSCE, between-station correlation is low (alpha=0.33 for one station). However, acceptable reliability is achieved with six stations (alpha=0.75).

A. **Scoring** (items/response options, test format, equating, security, rater selection/training)
B. **Generalization** (sampling [blueprint], reliability)
C. **Extrapolation** (scope, authenticity [expert panel, think-aloud], responsiveness, correlation, discrimination, factor analysis)
D. **Implications, decision** (impact, standard setting, differential functioning)

The camera angle during video recording did not permit viewing of a key step in the procedure.

A. **Scoring** (items/response options, test format, equating, security, rater selection/training)
B. **Generalization** (sampling [blueprint], reliability)
C. **Extrapolation** (scope, authenticity [expert panel, think-aloud], responsiveness, correlation, discrimination, factor analysis)
D. **Implications, decision** (impact, standard setting, differential functioning)
• Scores for interns, senior residents, and staff were essentially the same (no significant difference)

A. Scoring (items/response options, test format, equating, security, rater selection/training)
B. Generalization (sampling [blueprint], reliability)
C. Extrapolation (scope, authenticity [expert panel, think-aloud], responsiveness, correlation, discrimination, factor analysis)
D. Implications, decision (impact, standard setting, differential functioning)

• A program of assessment and remediation in laparoscopic surgery is found to reduce operative time by 33%

A. Scoring (items/response options, test format, equating, security, rater selection/training)
B. Generalization (sampling [blueprint], reliability)
C. Extrapolation (scope, authenticity [expert panel, think-aloud], responsiveness, correlation, discrimination, factor analysis)
D. Implications, decision (impact, standard setting, differential functioning)

• Raters agreed on nearly all codes, except for item 17. Analysis of these responses revealed that each rater had a slightly different expectation for performance on this item.

A. Scoring (items/response options, test format, equating, security, rater selection/training)
B. Generalization (sampling [blueprint], reliability)
C. Extrapolation (scope, authenticity [expert panel, think-aloud], responsiveness, correlation, discrimination, factor analysis)
D. Implications, decision (impact, standard setting, differential functioning)

• Scores showed modest correlation (r=0.55) with similar ratings with real patients

A. Scoring (items/response options, test format, equating, security, rater selection/training)
B. Generalization (sampling [blueprint], reliability)
C. Extrapolation (scope, authenticity [expert panel, think-aloud], responsiveness, correlation, discrimination, factor analysis)
D. Implications, decision (impact, standard setting, differential functioning)

What about Face Validity?
• Not a source of evidence
• Sometimes "face validity" is really content evidence
• Usually "face"-type data does little to support validity of inferences or decisions

Threats to validity
• Construct under-representation
 • Too few items / raters / obs
• Poor reliability
• Mismatch

Downing, Med Educ, 2004
Threats to validity
• Construct-irrelevant variance
• Flawed or biased items / rater
• Too easy / hard, teach to test, cheating

Workshop outline
• Decisions
• The validity argument
• Key inferences
• Pearls for scholars

Validity theory is rich, but the practice of validation is often impoverished.
- R. Brennan

How to convince a jury
1. Plan, organize (framework)
 • What evidence will you seek?
 • How to interpret the results?

 ![Framework!]

 Classical
 5 Evidence Sources
 Kane
 Content
 Construct
 Scoring
 Criterion
 Response process
 Generalization
 Internal structure, Relationships
 Extrapolation
 with other variables, Consequences
 Decision (newest, 0%)

 Impartial judgment
 Specific application
 Evidence needs vary

10,911 Abstracts screened
8320 excluded
2591 Articles full text screened
2173 excluded
418 Articles potentially appropriate
1 duplicate pub
417 Articles for review (n=19,075)
217 Articles for detailed review

Collect evidence
Plan ahead
Use an accepted framework
Prioritize evidence

Interpret evidence
Logical argument
Look for gaps

Cook et al. Acad Med 2013
How to convince a jury
2. What’s the decision?

Pulmonary embolism?
• History
• Exam
• CBC
• D-dimer
• Chest x-ray
• CT angiogram

Competent physician?
• Rotation shelf exam
• OSCE
• Portfolio
• Simulated procedure
• Certifying exam
• Workplace observation

Integration → Decision / Action

How to convince a jury
3. Complementary evidence sources

Expert-novice comparisons

A side note:
Expert-novice comparisons
• What we want in practice

A side note:
Expert-novice comparisons
• What we DO in validation (73% of studies)
Expert-novice comparisons

How to convince a jury

4. Don’t rely on expert-novice comparisons

5. Think about Consequences

6. Stand on the shoulders of giants!

• 417 studies
 • Maximum 27 for any given instrument
 • (Most were one-off)
 • ➔ Don’t start from scratch!

Building the validity argument

A few references

• Kane, “Validation” in Assessment Measurement 2006
• Kane, J Educ Meas 2013 – nice summary of IUA
• Cook, Am J Med 2006 – overview of Messick
• Cook, Acad Med 2013 – validity evidence and reporting quality (simulation)
• Cook, AHSE 2013 – operational details on Messick’s evidence sources
• Cook, Med Educ 2015 – how to use Kane